Доступные контрольные
Доступное образование
zachet.ca
zachet.ca
up

Физика - Чертов А.Г.
Задачник
Контрольная работа 3. Электростатика. Постоянный электрический ток.

301. Точечные заряды Q1 = 20 мкКл и Q2 = -10 мкКл находятся на расстоянии d = 5 см друг от друга. Определить напряженность поля в точке, удаленной на r1 = 3 см от первого и r2 = 4 см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q = 1 мкКл.

302. Три одинаковых точечных заряда Q1 = Q2 = Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами а = 10 см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других.

303. Два положительных точечных заряда Q и 9Q закреплены на расстоянии d = 100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения зарядов возможны только вдоль прямой, проходящей через закрепленные заряды.

304. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики погружают в масло. Какова плотность ρ0 масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков ρ = 1,5.103 кг/м3, диэлектрическая проницаемость масла ε = 2,2.

305. Четыре одинаковых заряда Q1 = Q2 = Q3 = Q4 = 40 нКл закреплены в вершинах квадрата со стороной а = 10 см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных.

306. Точечные заряды Q1 = 30 мкКл и Q2 = -20 мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1 = 30 см, a от второго - на r2 = 15 см.

307. В вершинах правильного треугольника со стороной a = 10 см находятся заряды Q1 = 10 мкКл, Q2 = -20 мкКл и Q3 = 30 мкКл. Определить силу F, действующую на заряд Q1 со стороны двух других зарядов.

308. В вершинах квадрата находятся одинаковые заряды Q1 = Q2 = Q3 = Q4 = 8.10-10 Кл. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?

309.
На расстоянии a = 20 см находятся два точечных заряда: Q1 = -50 нКл и Q2 = 100 нКл. Определить силу F, действующую на заряд Q3= -10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d.

310. Расстояние d между двумя точечными зарядами Q1 = 2 нКл и Q2 = 4 нКл равно 60 см. Определить точку, в которую нужно поместить третий заряд Q3 так, чтобы система зарядов находилась в равновесии. Определить заряд Q3 и его знак. Устойчивое или неустойчивое будет равновесие?

311. Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд τ = 0,1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии а = 20 см от его конца.

312. По тонкому полукольцу радиуса R = 10 см равномерно распределен заряд с линейной плотностью τ = 1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

313. Тонкое кольцо несет распределенный заряд Q = 0,2 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см. Радиус кольца R = 10 см.

314. Треть тонкого кольца радиуса R = 10 см несет распределенный заряд Q = 50 нКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

315. Бесконечный тонкий стержень, ограниченный с одной стороны, несет равномерно распределенный заряд с линейной плотностью τ = 0,5 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии а = 20 см от его начала.

316. По тонкому кольцу радиусом R = 20 см равномерно распределен с линейной плотностью τ  = 0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, находящейся на оси кольца на расстоянии h = 2R от его центра.

317. По тонкому полукольцу равномерно распределен заряд Q = 20 мкКл с линейной плотностью τ = 0,1 мкКл/м. Определить напряженность Е электрического поля, со-здаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

318. Четверть тонкого кольца радиусом R = 10 см несет равномерно распределенный заряд Q = 0,05 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

319. По тонкому кольцу равномерно распределен заряд Q = 10 нКл с линейной плотностью τ = 0,01 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси кольца и удаленной от его центра на расстояние, равное радиусу кольца.

320. Две трети тонкого кольца радиусом R = 10 см несут равномерно распределенный с линейной плотностью τ = 0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

321. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = 4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 1,5R; 3) построить график E(r).

322. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 = -σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3; 3) построить график E(r).

323. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = -4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м2, r = 1,5R; 3) построить график E(r).

324. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = -2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3R; 3) построить график E(r).

325. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 25). Требуется: 1) используя теорему Остроградского-Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1 = 2σ, σ2 = σ; 2) вычислить напряженность Е поля в точке, расположенной слева от плоскостей, и указать направление вектора Е; 3) построить график Е(х).

326. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 25). Требуется: 1) используя теорему Остроградского-Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1 = -4σ, σ2 = 2σ; 2) вычислить напряженность Е поля в точке, расположенной между плоскостями, и указать направление вектора Е, σ = 40 нКл/м2; 3) построить график Е(х).

327. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 25). Требуется: 1) используя теорему Остроградского-Гаусса и принцип суперпозиции электрических полей, найти выражение Е(х) напряженности электрического поля в трех областях: I, II и III. Принять σ1 = σ, σ2 = -2σ; 2) вычислить напряженность Е поля в точке, расположенной справа от плоскостей, и указать направление вектора Е, σ = 20 нКл/м2; 3) построить график Е(х).

328. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 26). Требуется: 1) используя теорему Остроградского-Гаусса: найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = -2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м2, r = 1,5R; 3) построить график E(r).

329. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 26). Требуется: 1) используя теорему Остроградского-Гаусса: найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 =; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 60 нКл/м2, r = 3R; 3) построить график E(r).

330. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис. 26). Требуется: 1) используя теорему Остроградского-Гаусса: найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = -σ, σ2 =; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 4R; 3) построить график E(r).

331. Два точечных заряда Q1 = 6 нКл и Q2 = 3 нКл находятся на расстоянии  d = 60 см друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?

332.
Электрическое поле создано заряженным проводящим шаром, потенциал φ которого 300 В. Определить работу сил поля по перемещению заряда Q = 0,2 мкКл из точки 1 в точку 2 (рис. 27).

333. Электрическое поле создано зарядами Q1 = 2 мкКл и Q2 = -2 мкКл, находящимися на расстоянии a = 10 см друг от друга, определить работу сил поля, совершаемую при перемещении заряда Q = 0,5 мкКл из точки 1 в точку 2 (рис. 28).

334. Две параллельные заряженные плоскости, поверхностные плотности заряда которых σ1 = 2 мкКл/м2 и σ2 = -0,8 мкКл/м2, находятся на расстоянии d = 0,6 см друг от друга. Определить разность потенциалов U между плоскостями.

335. Диполь с электрическим моментом p = 100 пКл.м свободно установился в свободном электрическом поле напряженностью Е = 200 кВ/м. Определить работу внешних сил, которую необходимо совершить для поворота диполя на угол α = 180°.

336. Четыре одинаковых капли ртути, заряженных до потенциала φ = 10 В, сливаются в одну. Каков потенциал φ1 образовавшейся капли?

337. Тонкий стержень согнут в кольцо радиусом R = 10 см. Он равномерно заряжен с линейной плотностью τ  = 800 нКл/м. Определить потенциал в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра.

338. Поле образовано точечным диполем с электрическим моментом p = 200 пКл.м. Определить разность потенциалов U двух точек поля, расположенных симметрично относительно диполя на его оси на расстоянии r = 40 см от центра диполя.

339. Электрическое поле образовано бесконечно длинной нитью, заряженной с линейной плотностью τ =20 пКл/м. Определить разность потенциалов U двух точек поля, отстоящих от нити на расстоянии r1 = 8 см и r2 = 12 см.

340. Тонкая квадратная рамка равномерно заряжена с линейной плотностью заряда τ =200 пКл/м. Определить потенциал φ поля в точке пересечения диагоналей.

341. Пылинка массой m = 200 мкг, несущая на себе заряд Q = 40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U = 200 В пылинка имела скорость
v = 10 м/с. Определить скорость пылинки до того, как она влетела в поле.

342. Электрон, обладавший кинетической энергией Т = 10 эВ, влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U = 8 В?

343. Найти отношение скоростей ионов Сu++ и K+, прошедших одинаковую разность потенциалов.

344. Электрон с энергией T = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние, на которое приблизится электрон к поверхности сферы, если заряд ее Q = - 10 нКл.

345. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость
v = 105 м/с. Расстояние между пластинами d = 8 мм. Найти: 1) разность потенциалов U между пластинами; 2) поверхностную плотность заряда σ на пластинах.

346. Пылинка массой m = 5 нг, несущая на себе N = 10 электронов, прошла в вакууме ускоряющую разность потенциалов U = 1 MB. Какова кинетическая энергия T пылинки? Какую скорость
v приобрела пылинка?

347. Какой минимальной скоростью
vmin должен обладать протон, чтобы он мог достигнуть поверхности заряженного до потенциала φ = 400 В металлического шара (рис. 29).

348. В однородное электрическое поле напряженностью Е = 200 В/м влетает (вдоль силовой линии) электрон со скоростью
v0 = 2 Мм/с. Определить расстояние l , которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.

349. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом (τ = 10 нКл/м). Определить кинетическую энергию T2 электрона в точке 2, если в точке 1 его кинетическая энергия T1 = 200 эВ (рис. 30).

350. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1 = 100 В электрон имел скорость V1 = 6 Мм/с. Определить потенциал φ2 точки поля, дойдя до которой электрон потеряет половину своей скорости.

351. Конденсаторы емкостью С1 = 5 мкФ и С2 = 10 мкФ заряжены до напряжений U1 = 60 В и U2 = 100 В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.

352. Конденсатор емкостью C1 = 10 мкФ заряжен до напряжения U1 = 10 В. Определить заряд на обкладках этого конденсатора после того, как параллельно ему был подключен другой, незаряженный, конденсатор емкостью С2 = 20 мкФ.

353. Конденсаторы емкостями С1 = 2 мкФ, С2 = 15 мкФ и С3 =10 мкФ соединены последовательно и находятся под напряжением U = 850 В. Определить напряжение и заряд на каждом из конденсаторов.

354. Два конденсатора емкостями С1 = 2 мкФ и С2 = 5 мкФ заряжены до напряжений U1 = 100 В и U2 = 150 В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими разноименные заряды.

355. Два одинаковых плоских воздушных конденсатора емкостью С = 100 пФ каждый соединены в батарею последовательно. Определить, на сколько изменится емкость С батареи, если пространство между пластинами одного из конденсаторов заполнить парафином.

356. Два конденсатора емкостью С1 = 5 мкф и С2 = 8 мкф соединены последовательно и присоединены к батарее с э.д.с. ε = 80В. Определить заряд Q1 и Q2 каждого из конденсаторов и разности потенциалов U1 и U2 между их обкладками.

357. Плоский конденсатор состоит из двух круглых пластин радиусом R = 10 см каждая. Расстояние между пластинами d = 2 мм. Конденсатор присоединен к источнику напряжения U = 80В. Определить заряд Q и напряженность E поля конденсатора, если диэлектриком будут: а) воздух; б) стекло.

358. Два металлических шарика радиусами R1 = 5 см и R2 = 10 см имеют заряды Q1 = 40 нКл и Q2 = -20 нКл соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником.

359. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектриков: слоем стекла толщиной d1 = 0,2 см и слоем парафина толщиной d2 = 0,3 см. Разность потенциалов между обкладками U = 300В. Определить напряженность E поля и падение потенциала в каждом из слоев.

360. Плоский конденсатор с площадью пластин S =200 см2 каждая заряжен до разности потенциалов U = 2 кВ. Расстояние между пластинами d = 2 см. Диэлектрик - стекло. Определить энергию W поля конденсатора и плотность w энергии поля.

361. Катушка и амперметр соединены последовательно и присоединены к источнику тока. К клеммам катушки присоединен вольтметр с сопротивлением r = 4 кОм. Амперметр показывает I = 0,3 А, вольтметр U = 120 В. Определить сопротивление катушки. Сколько процентов составит ошибка, если при определении сопротивления катушки не будет учтено сопротивление вольтметра?

362. ЭДС батареи ε = 80 В, внутреннее сопротивление R = 5 Ом. Внешняя цепь потребляет мощность Р = 100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внешняя цепь, и ее сопротивление R.

363. От батареи, э. д. с. которой ε = 600 В, требуется передать энергию на расстояние l = 1 км. Потребляемая мощность P = 5 кВт. Найти минимальные потери мощности в сети, если диаметр медных подводящих проводов d = 0,5 см.

364. При внешнем сопротивлении R1 = 8 Ом сила тока в цепи I1 = 0,8 А, при сопротивлении R2 = 15 Ом сила тока I2 = 0,5 А. Определить силу тока Iк.з. короткого замыкания источника э. д. с.

365. Э. д. с. батареи ε = 24 В. Наибольшая сила тока, которую может дать батарея, Iмакс = 10 А. Определить максимальную мощность Рмакс, которая может выделяться во внешней цепи.

366. Аккумулятор с ЭДС ε = 12 В заряжается от сети постоянного тока с напряжением U = 15 В. Определить напряжение на клеммах аккумулятора, если его внутреннее сопротивление Ri = 10 Ом.

367. От источника с напряжением U = 800 В необходимо передать потребителю мощность Р = 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности?

368. При включении электромотора в сеть с напряжением U = 220 В он потребляет ток I = 5А. Определить мощность, потребляемую мотором, и его КПД, если сопротивление R обмотки мотора равно 6 Ом.

369. В сеть с напряжением U = 100 В включили катушку с сопротивлением R1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U1 = 80 В. Когда катушку заменили другой, вольтметр показал U2 = 60 В. Определить сопротивление R2 другой катушки.

370. ЭДС батареи ε = 12 В. При силе тока I = 4 А к. п. д. батареи η = 0,6. Определить внутреннее сопротивление Ri батареи.

371. За время t = 20 с при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Определить скорость нарастания силы тока, если сопротивление проводника R = 5 Ом.

372. Сила тока в проводнике изменяется со временем по закону I = I0e-αt , где I0 = 20 А, а α = 102 с-1. Определить количество теплоты, выделившееся в проводнике за время t = 10-2 с.

373. Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50 с равномерно нарастает от I1 = 5 А до I2 = 10 А. Определить количество теплоты Q, выделившееся за это время в проводнике.

374. В проводнике за время t = 10 с при равномерном возрастании силы тока от I1 = 1 А до I2 = 2 А выделилось количество теплоты Q = 5 кДж. Найти сопротивление R проводника.

375. Сила тока в проводнике изменяется со временем по закону I = I0sinωt. Найти заряд Q, проходящий через поперечное сечение проводника за время t, равное половине периода Т, если начальная сила тока I0 = 10 А, циклическая частота ω = 50πс-1.

376. За время t = 10 с при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике выделилось количество теплоты Q = 40 кДж. Определить среднюю силу тока <I> в проводнике, если его сопротивление R = 25 Ом.

377. За время t = 8 с при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, проходящий в проводнике, если сила тока в начальный момент времени равна нулю.

378. Определить количество теплоты Q, выделившееся за время t = 10 с в проводнике сопротивлением R = 10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I1= 10 А до I2 = 0.

379. Сила тока в цепи изменяется по закону I = I0sinωt. Определить количество теплоты, которое выделится в проводнике сопротивлением R = 10 Ом за время, равное четверти периода (от t1 = 0 до t2 = Т/4, где T = 10c).

380. Сила тока в проводнике изменяется со временем по закону I = I0e-αt . Определить количество теплоты, которое выделится в проводнике сопротивлением R = 20 Ом за время, в течение которого ток уменьшится в е раз. Коэффициент α принять равным 2.10-2 с-1.
Вариант 0310320330340350360370380
Вариант 1301311321331341351361371
Вариант 2302312322332342352362372
Вариант 3303313323333343353363373
Вариант 4304314324334344354364374
Вариант 5305315325335345355365375
Вариант 6306316326336346356366376
Вариант 7307317327337347357367377
Вариант 8308318328338348358368378
Вариант 9309319329339349359369379
Безымянная страница
Задачник по физике.

Чертов А.Г., Воробьев А.А.

1987г.


Задачник соответствует ВУЗовской учебной программе по физике.
Каждый раздел имеет задачи степень сложности которых возрастает
с ростом их порядкового номера. Каждый параграф начинается с
необходымых теоретических выдержек и формул а также примеров
решения задач.

Издание пятое переработанное Москва 1987 "Высшая школа"
Вариант 0310340350370420440460470
Вариант 1301331341361411431451461
Вариант 2302332342362412432452462
Вариант 3303333343363413433453463
Вариант 4304334344364414434454464
Вариант 5305335345365415435455465
Вариант 6306336346366416436456466
Вариант 7307337347367417437457467
Вариант 8308338348368418438458468
Вариант 9309339349369419439459469
Таблица вариантов для специальностей, учебными планами которых предусмотрено четыре контрольные работы: