Доступные контрольные
Доступное образование
zachet.ca
zachet.ca
Теоретическая механика - Кепе О.Э.
Динамика
Глава 22. Теория удара.
22.4. Действие ударных сил на твердое тело, совершающее плоскопараллельное движение.
22.4.1. До удара тело массой 20 кг имело скорость центра масс v = 3i и угловую скорость ω = 4k. Определить скорость тела после удара, если ударный импульс S = -20i. (Ответ 2)
22.4.2. Однородный стержень длиной l = 1,2 м и массой m = 5 кг надает вертикально без вращения со скоростью центра масс vo = 2 м/с. К стержню прикладывается ударный импульс S = 12 Н · с, направленный вертикально вверх. Определить скорость центра масс стержня после удара. (Ответ 0,4)
22.4.3. Сильно закрученный мяч после удара по плоскости со скоростью v1 = 4 м/с центра масс под углом падения α = 30o отскакивает в вертикальном направлении со скоростью v2 = 2,5 м/с. Определить модуль нормального импульса SN, если масса мяча m = 0,05 кг. (Ответ 0,298)
22.4.4. До удара по плоскости скорость центра масс закрученного обруча v1 = 3 м/с, а после удара стала равной v2 = 1,8 м/с. Определить коэффициент восстановления нормального импульса, если угол падения α = 45o, а угол отражения β = 32°. (Ответ 0,720)
22.4.5. Диск, вращаясь с угловой скоростью ωо = 2 рад/с, ударяет по вертикальной стенке со скоростью центра масс v0 = 1,8 м/с под углом α = 45°. Определить модуль нормального импульса SN, если масса диска m = 0,6 кг, а коэффициент восстановления нормального импульса k = 0,55. (Ответ 1,18)
22.4.6. Шар массой m = 0,2 кг падает на неподвижную плоскую преграду без вращения со скоростью v0 = 2 м/с под углом α = 45° и отскакивает со скоростью v = 1,5 м/с под углом β = 60°. Определить модуль касательного импульса SF. (Ответ 2,30 · 10-2)
22.4.7. Шар массой m = 0,4 кг без вращения со скоростью v0 = 3 м/с под углом α = 75° ударяет по неподвижной плоскости. Коэффициент восстановления нормального импульса k = 0,5. Определить касательный импульс SF = fSN в режиме полного скольжения, если коэффициент трения f = 0,1. (Ответ 4,66 · 10-2)
22.4.8. Горизонтальный стержень АВ, падая вертикально без вращения со скоростью v0 = 2 м/с, ударяет по упору D на расстоянии от центра масс а = 0,1 м. Определить угловую скорость ω стержня после удара, если ударный импульс SD = 2 Н · с, а момент инерции IС = 0,04 кг · м2. (Ответ 5)
22.4.9. Закрученный мяч с угловой скоростью ω0 = 6 рад/с и скоростью v0 = 0,8 м/с центра масс падает на преграду по нормали. Определить модуль угловой скорости со мяча после удара, если составляющие ударного импульса SN = 0,85 Н · с, SF = 0,085 Н · с, радиус R = 0,1 м и момент инерции ICz = 0,003 кг · м2. (Ответ 3,17)
22.4.10. Тонкий однородный стержень, вращаясь вокруг оси Az с угловой скоростью ωo = 4 рад/с, в горизонтальном положении ударяет по неподвижному упору в середине стержня. При этом происходит отрыв от оси вращения Az без ударного импульса. Определить угловую скорость стержня после удара. (Ответ 4)
22.4.11. Однородный стержень массой m = 2 кг и длиной l = 0,6 м надает без вращения на неподвижную плоскую преграду со скоростью vo = 2 м/с. Определить модуль угловой скорости ω после удара, если проекции импульса SN = 2,5 H · с, SF = 0,5 Н · с, а угол φ = 55°. (Ответ 5,12)
Скачать решебник Кепе О.Э.
Сборник коротких задач по теоретической механике.
Кепе О.Э.
Книга состоит из 1757 заданий которые предназначены для бысторого
контроля знаний на занятиях и зачетах а также для допуска к экзамену.
Задачи имеют ответы.
Издательство "Высшая школа" 1989 Москва
Также решение задач Кепе можно скачать здесь:
Мобильное приложение для Андроид:
ВКонтакте
LiveInternet
Площадка "Оплата"
Площадка "Плати"
(в строке поиска наберите номер нужной задачи, например 15.7.7)
Как скачать решение сразу после оплаты узнай тут !!!